
Towards Implicit Resistive Magnetohydrodynamics

with Local Mesh Refinement1

Michael Pernice2 Bobby Philip2 Luis Chacón3

Los Alamos National Laboratory

Los Alamos, NM 87544

Solution Methods for Large-scale Nonlinear Problems

Livermore, CA

August 6–8, 2003

1This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory under contract
W-7405-ENG-36. Los Alamos National Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
LAUR 03-3541

2Computer and Computational Sciences Division
3Theoretical Division

Outline

• Motivation

• Resistive Magnetodynamics Model

• Physics-based Preconditioner

• Software Infrastructure

• Preconditioner Components

• Verification Efforts

• Observations

1

Motivation

• Models of resistive MHD contain multiple length and time scales.

I Solutions often have highly localized spatial features.

I Implicit timestepping schemes are needed.

� Explicit time stepping requires ∆t . O(∆x2) when diffusion/Hall effects are

significant.

� Semi-implicit methods allow ∆t . O(∆x).

F Accuracy often requires somewhat smaller values.

� Implicit time steps are constrained only by accuracy requirements.

F Time steps closer to time scales of interest are possible.

F Fast solution of large-scale systems of nonlinear equations is necessary for this to

be competitive.

• Important applications exist in space weather and fusion simulation.

2

Reduced Resistive MHD Model

Two-dimensional incompressible plasma:

∆Φ = ω

(∂t + u · ∇ − µ∆) Ψ + E0 = 0

(∂t + u · ∇ − ν∆) ω + Sω = B · ∇J

on Ω = [0, L]× [0, 1]

where

J = ∆Ψ u = ~k ×∇Φ =

(
−Φy

Φx

)
B = ~k ×∇Φ =

(
−Ψy

Ψx

)

Periodic boundary conditions in x and homogeneous Dirichlet boundary conditions in y.

Equilibrium sources are chosen to balance prescribed initial conditions:

E0 = µ∆Ψ0, Sω = ν∆ω0.

3

Semi-discretization in Time

Crank-Nicolson discretization in time is used. Given a solution (Φ(n), Ψ(n), ω(n)) at time

level n, the time-advanced solution is the root of

F (Φ, Ψ, ω) =

 ∆Φ− ω
Ψ
∆t + θ (∇ · (uΨ)− µ∆Ψ)

ω
∆t + θ (∇ · (uω)− ν∆ω − B · ∇J)



+


0

−Ψ(n)

∆t + (1− θ)
(
∇ · (u(n)Ψ(n))− µ∆Ψ(n)

)
−ω(n)

∆t + (1− θ)
(
∇ · (u(n)ω(n))− ν∆ω(n) − B(n) · ∇J (n)

)


+

 0

µ∆Ψ0

ν∆ω0

 .

4

Preconditioner

Every nonlinear iteration of every time step requires solution of a system of linear equations

F
′
(Φ

(n+1)
k , Ψ

(n+1)
k , ω

(n+1)
k)

 δΦ

δΨ

δω

 = −F (Φ
(n+1)
k , Ψ

(n+1)
k , ω

(n+1)
k).

The task is to find a preconditioner M ≈ F ′(Φ
(n+1)
k , Ψ

(n+1)
k , ω

(n+1)
k) such that

M

 zΦ

zΨ

zω

 =

 rΦ

rΨ

rω


is “easy” to solve.

5

Semi-implicit Preconditioner

Chacón, Knoll and Finn4 derived an effective physics-based preconditioner based on solving

(
Lµ −θB0 · ∇

−θB0 · ∇ Lν

)(
δΨ

δΦ

)
=

(
rΨ

∇−2[rω − LνrΦ]

)

for δΨ and δΦ, followed by solving

Lνδω = rω + θ(∇ · (B0δJ) +∇ · (δBJ0) + (~k ×∇ω0) · ∇δΦ).

Here, Lν = 1
∆t + θ (u0 · ∇ − ν∆) and Lµ = 1

∆t + θ (u0 · ∇ − µ∆).

4This workshop, Friday at 11; see also JCP, 178, 2002.

6

Reformulation as Stationary Method

(
Lµ −θB0 · ∇

−θB0 · ∇ Lν

)
︸ ︷︷ ︸

P

=

(
Lµ −θB0 · ∇

−θB0 · ∇ Dν

)
︸ ︷︷ ︸

M

−
(

0 0

0 Dν − Lν

)

(
δΨ

δΦ

)
←
(

δΨ

δΦ

)
+M−1

((
rΨ

∇−2[rω − LνrΦ]

)
− P

(
δΨ

δΦ

))

M =

(
1 −θB0 · ∇D−1

ν

0 1

)(
Lµ − θ2∇ · B0D−1

ν Bt
0∇ 0

−θB0 · ∇ Dν

)
.

7

Preconditioner Summary

Procedure applyRMHDPreconditioner:

Set RΨ = rΨ.

Set RΦ = ∇−2[rω − LνrΦ].

Set δΨ0 = δΦ0 = 0.

Semi-implicit iteration: For m = 0, . . . , max iters {
Set fΨ = RΨ + θB0 · ∇D−1

ν RΦ.

Solve
(
Lµ − θ2∇ · B0D−1

ν Bt
0∇
)

δΨ = fΨ.

Set fΦ = RΦ + θB0 · ∇δΨ.

Set δΦ = D−1
ν fΦ.

δΨm+1 = δΨm + δΨ, δΦm+1 = δΦm + δΦ.

Update RΨ = rΨ − LµδΨm+1 + θB0 · ∇δΦm+1.

Update RΦ = ∇−2[rω − LνrΦ]− LνδΦm+1 + θB0 · ∇δΨm+1.

}
Solve for δω.

8

Structured Adaptive Mesh Refinement

Structured adaptive mesh refinement (SAMR) represents a locally refined mesh as a union of

logically rectangular meshes.

• The mesh is organized as a hierarchy of nested refinement levels.

• Each refinement level defines a region of uniform resolution.

• Each refinement level is the union of logically rectangular patches.

9

Software Infrastructure

SAMRAI is used to manage the complexity associated with a dynamic, locally refined grid.

Interoperability to solver packages is enabled through use of software wrappers, which allow

the solvers to operate directly on grid-based data with no copy overhead.

Weights

velocity weights
pressure weights

VariablesOperations

SAMRAIVector

Pointer to Grid Hierarchy

pressure
velocity

CellDataOps

FaceDataOps

kins_AbstractVector

KINSOL_SAMRAIVector

petc_AbstractVector

PETSc_SAMRAIVector

PETSc Vec operations

SAMRAIVector*

KINSOL N_Vector operations

SAMRAIVector*

10

Requirements for Extension to SAMR

With software that implements inexact Newton methods on SAMR grids, the task is to write

the required methods for function evaluation and management of the preconditioner.

• Nonlinear function evaluation.

I All spatial discretizations must properly account for changes in

resolution.

• Setup and apply the preconditioner.

I Generalize preconditioner components from multigrid solvers to Fast

Adaptive Composite grid (FAC) solvers:

� Poisson solver

� convection-tensor diffusion solver

� convection-diffusion solver

11

Spatial Discretization at Changes in Resolution

This must be handled properly for each of:

∇ ∇× u · ∇ B · ∇ ∇ ·D∇

12

FAC

Procedure FAC(h, fh, uh):

If h = {hc}, solve Lhcuhc = fhc and return.

Set fh = Ih
h(fh − Lhuh).

Solve/Smooth Lhuh = fh.

Correct uh = uh + I
h
huh.

Set u2h = 0, f2h = I
2h
h (fh − Lhuh).

u2h = FAC(2h, f2h, u2h).

Correct uh = uh + I
h
2hu2h.

Set fh = Ih
h(fh − Lhuh).

Solve/Smooth Lhuh = fh.

Correct uh = uh + I
h
huh.

13

Implementation of Preconditioner Components

• Solves on the coarsest level using one V-cycle of the smg solver from hypre.

• Simple red-black point Gauß-Seidel smoothing on finer levels.

• Interlevel transfers use built-in geometric interpolation from SAMRAI.

14

Verification of Poisson solver

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

1/256 1/128 1/64 1/32 1/16

||E
rr

or
||

Base grid resolution

Levels
1
2
3
4
5

 0.01

 0.1

 1

1 2 3 4

A
ve

ra
ge

 c
on

ve
rg

en
ce

 fa
ct

or

Number of refinement levels

Base mesh
1/16
1/32
1/64
1/128
1/256

15

Verification of Convection-Tensor Diffusion Solver

-6

-5.5

-5

-4.5

-4

-3.5

-3

1/256 1/128 1/64 1/32 1/16

lo
g(

||E
rr

or
||)

Base grid resolution

Levels
1
2
3
4
5

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 5 4 3 2

A
ve

ra
ge

 c
on

ve
rg

en
ce

 fa
ct

or

Number of refinement levels

Base mesh
1/16
1/32
1/64
1/128
1/256

16

Verification of Semi-Implicit Iteration

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 0 2 4 6 8 10

||r
||

Iteration

dt = 0.25

Psi
Phi

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0 2 4 6 8 10

||r
||

Iteration

dt = 5

Psi
Phi

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 0 2 4 6 8 10

||r
||

Iteration

dt = 0.25

Psi
Phi

 1e-09

 1e-08

 1e-07

 1e-06

 0 2 4 6 8 10

||r
||

Iteration

dt = 5

Psi
Phi

17

Verification of Function Evaluation

18

Verification of Single Level Performance

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4 5 6 7 8 9 10

Li
ne

ar
 it

er
at

io
ns

Time

dt = 0.25

Original
New

 0

 10

 20

 30

 40

 50

 60

 70

5 10 15 20 25 30 35 40 45 50

Li
ne

ar
 it

er
at

io
ns

Time

dt = 5

Original
New

19

Observations

• A preconditioner interface that consists of four functions

1. createPreconditioner
2. setupPreconditioner
3. applyPreconditioner
4. destroyPreconditioner

has proven to be quite useful and provides all needed flexibility.

• Surprisingly little existing code was reused.

• A component-based approach to building complex applications can provide both flexibility

and needed high-level abstractions to simplify implementation.

I The right level of granularity is hard to find.

I Comprehensive testing is necessary, but not sufficient.

I No monolithic components.

• Decoupling solver abstractions from other abstractions (grid management, geometry

management, data transfer) can lead to wider applicability and eliminates most copy

operations.

20

